p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22.83C25, C23.133C24, C42.572C23, C24.505C23, C22.182+ (1+4), C4⋊Q8⋊33C22, D4⋊5D4⋊17C2, D4⋊6D4⋊20C2, (C4×D4)⋊41C22, (C2×C4).74C24, (C4×Q8)⋊42C22, C4⋊1D4⋊49C22, C4⋊C4.486C23, C4⋊D4⋊25C22, (C2×C42)⋊57C22, C22⋊Q8⋊29C22, C22≀C2.8C22, (C2×D4).301C23, C4.4D4⋊26C22, C22⋊C4.99C23, (C2×Q8).286C23, C42.C2⋊54C22, C42⋊2C2⋊35C22, C22.45C24⋊4C2, C22.29C24⋊21C2, C22.11C24⋊17C2, C42⋊C2⋊38C22, C22.19C24⋊29C2, (C22×C4).356C23, (C23×C4).609C22, C2.30(C2×2+ (1+4)), C2.20(C2.C25), C22.26C24⋊33C2, C22.34C24⋊9C2, (C22×D4).425C22, C22.D4⋊51C22, C23.36C23⋊27C2, C22.36C24⋊12C2, C22.49C24⋊12C2, C23.41C23⋊13C2, C22.47C24⋊14C2, C23.33C23⋊19C2, C4⋊C4○(C4⋊D4), (C2×C4)⋊12(C4○D4), (C2×C4⋊D4)⋊66C2, C22⋊C4○(C4⋊D4), C4.139(C2×C4○D4), (C2×C4⋊C4)⋊142C22, (C2×C4○D4)⋊28C22, C2.48(C22×C4○D4), C22.28(C2×C4○D4), (C2×C42⋊C2)⋊67C2, (C2×C22⋊C4).380C22, SmallGroup(128,2226)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 900 in 571 conjugacy classes, 390 normal (50 characteristic)
C1, C2 [×3], C2 [×11], C4 [×4], C4 [×20], C22, C22 [×4], C22 [×33], C2×C4 [×4], C2×C4 [×22], C2×C4 [×34], D4 [×40], Q8 [×6], C23 [×3], C23 [×6], C23 [×13], C42 [×14], C22⋊C4 [×46], C4⋊C4 [×6], C4⋊C4 [×28], C22×C4 [×6], C22×C4 [×20], C22×C4 [×4], C2×D4, C2×D4 [×26], C2×D4 [×8], C2×Q8, C2×Q8 [×4], C4○D4 [×12], C24, C24 [×2], C2×C42 [×2], C2×C22⋊C4 [×8], C2×C4⋊C4 [×3], C2×C4⋊C4 [×2], C42⋊C2 [×5], C42⋊C2 [×10], C4×D4 [×26], C4×Q8 [×2], C22≀C2 [×6], C4⋊D4 [×2], C4⋊D4 [×24], C22⋊Q8 [×2], C22⋊Q8 [×8], C22.D4 [×18], C4.4D4 [×10], C42.C2 [×4], C42⋊2C2 [×8], C4⋊1D4 [×2], C4⋊Q8 [×4], C23×C4, C22×D4, C22×D4 [×2], C2×C4○D4, C2×C4○D4 [×4], C2×C42⋊C2, C22.11C24, C23.33C23, C2×C4⋊D4, C22.19C24, C23.36C23 [×2], C22.26C24 [×2], C22.29C24, C22.34C24 [×2], C22.36C24 [×2], C23.41C23, D4⋊5D4 [×4], D4⋊6D4 [×2], C22.45C24 [×4], C22.47C24 [×4], C22.49C24 [×2], C22.83C25
Quotients:
C1, C2 [×31], C22 [×155], C23 [×155], C4○D4 [×4], C24 [×31], C2×C4○D4 [×6], 2+ (1+4) [×2], C25, C22×C4○D4, C2×2+ (1+4), C2.C25, C22.83C25
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=1, d2=b, g2=a, ab=ba, dcd-1=gcg-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
(1 27)(2 28)(3 25)(4 26)(5 30)(6 31)(7 32)(8 29)(9 15)(10 16)(11 13)(12 14)(17 23)(18 24)(19 21)(20 22)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 9)(2 16)(3 11)(4 14)(5 18)(6 21)(7 20)(8 23)(10 28)(12 26)(13 25)(15 27)(17 29)(19 31)(22 32)(24 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 6)(2 7)(3 8)(4 5)(9 23)(10 24)(11 21)(12 22)(13 19)(14 20)(15 17)(16 18)(25 29)(26 30)(27 31)(28 32)
(2 28)(4 26)(5 30)(7 32)(10 16)(12 14)(18 24)(20 22)
(1 15 27 9)(2 16 28 10)(3 13 25 11)(4 14 26 12)(5 20 30 22)(6 17 31 23)(7 18 32 24)(8 19 29 21)
G:=sub<Sym(32)| (1,27)(2,28)(3,25)(4,26)(5,30)(6,31)(7,32)(8,29)(9,15)(10,16)(11,13)(12,14)(17,23)(18,24)(19,21)(20,22), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,9)(2,16)(3,11)(4,14)(5,18)(6,21)(7,20)(8,23)(10,28)(12,26)(13,25)(15,27)(17,29)(19,31)(22,32)(24,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6)(2,7)(3,8)(4,5)(9,23)(10,24)(11,21)(12,22)(13,19)(14,20)(15,17)(16,18)(25,29)(26,30)(27,31)(28,32), (2,28)(4,26)(5,30)(7,32)(10,16)(12,14)(18,24)(20,22), (1,15,27,9)(2,16,28,10)(3,13,25,11)(4,14,26,12)(5,20,30,22)(6,17,31,23)(7,18,32,24)(8,19,29,21)>;
G:=Group( (1,27)(2,28)(3,25)(4,26)(5,30)(6,31)(7,32)(8,29)(9,15)(10,16)(11,13)(12,14)(17,23)(18,24)(19,21)(20,22), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,9)(2,16)(3,11)(4,14)(5,18)(6,21)(7,20)(8,23)(10,28)(12,26)(13,25)(15,27)(17,29)(19,31)(22,32)(24,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6)(2,7)(3,8)(4,5)(9,23)(10,24)(11,21)(12,22)(13,19)(14,20)(15,17)(16,18)(25,29)(26,30)(27,31)(28,32), (2,28)(4,26)(5,30)(7,32)(10,16)(12,14)(18,24)(20,22), (1,15,27,9)(2,16,28,10)(3,13,25,11)(4,14,26,12)(5,20,30,22)(6,17,31,23)(7,18,32,24)(8,19,29,21) );
G=PermutationGroup([(1,27),(2,28),(3,25),(4,26),(5,30),(6,31),(7,32),(8,29),(9,15),(10,16),(11,13),(12,14),(17,23),(18,24),(19,21),(20,22)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,9),(2,16),(3,11),(4,14),(5,18),(6,21),(7,20),(8,23),(10,28),(12,26),(13,25),(15,27),(17,29),(19,31),(22,32),(24,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,6),(2,7),(3,8),(4,5),(9,23),(10,24),(11,21),(12,22),(13,19),(14,20),(15,17),(16,18),(25,29),(26,30),(27,31),(28,32)], [(2,28),(4,26),(5,30),(7,32),(10,16),(12,14),(18,24),(20,22)], [(1,15,27,9),(2,16,28,10),(3,13,25,11),(4,14,26,12),(5,20,30,22),(6,17,31,23),(7,18,32,24),(8,19,29,21)])
Matrix representation ►G ⊆ GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 2 | 0 |
0 | 0 | 1 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 4 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 2 |
0 | 0 | 0 | 2 | 2 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 1 | 0 |
0 | 0 | 2 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 2 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 2 |
0 | 0 | 0 | 1 | 2 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 2 | 0 |
0 | 0 | 4 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,2,0,0,4,0,0,0,2,4,0],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,2,0,0,0,3,0,0,2,0,0,0,0,0,2,0,0,0,0,2,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0,0,0,0,0,1,0,0,2,0,0,0,4,3,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,2,4,0,0,0,2,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,2,0,0,4,0,0,0,3,1,0] >;
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | ··· | 2N | 4A | ··· | 4N | 4O | ··· | 4AC |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ (1+4) | C2.C25 |
kernel | C22.83C25 | C2×C42⋊C2 | C22.11C24 | C23.33C23 | C2×C4⋊D4 | C22.19C24 | C23.36C23 | C22.26C24 | C22.29C24 | C22.34C24 | C22.36C24 | C23.41C23 | D4⋊5D4 | D4⋊6D4 | C22.45C24 | C22.47C24 | C22.49C24 | C2×C4 | C22 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 4 | 2 | 4 | 4 | 2 | 8 | 2 | 2 |
In GAP, Magma, Sage, TeX
C_2^2._{83}C_2^5
% in TeX
G:=Group("C2^2.83C2^5");
// GroupNames label
G:=SmallGroup(128,2226);
// by ID
G=gap.SmallGroup(128,2226);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,456,1430,570,1684,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=1,d^2=b,g^2=a,a*b=b*a,d*c*d^-1=g*c*g^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations